Variables Influencing Machine Learning-Based Cardiac Decision Support System: A Systematic Literature Review

Author:

Rahman Mohammed Ashikur1ORCID,Tumian Afidalina1ORCID

Affiliation:

1. International Islamic University

Abstract

Now a day, clinical decision support systems (CDSS) are widely used in the cardiac care due to the complexity of the cardiac disease. The objective of this systematic literature review (SLR) is to identify the most common variables and machine learning techniques used to build machine learning-based clinical decision support system for cardiac care. This SLR adopts the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA) format. Out of 530 papers, only 21 papers met the inclusion criteria. Amongst the 22 most common variables are age, gender, heart rate, respiration rate, systolic blood pressure and medical information variables. In addition, our results have shown that Simplified Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) are some of the most common assessment scales used in CDSS for cardiac care. Logistic regression and support vector machine are the most common machine learning techniques applied in CDSS to predict mortality and other cardiac diseases like sepsis, cardiac arrest, heart failure and septic shock. These variables and assessment tools can be used to build a machine learning-based CDSS.

Publisher

Trans Tech Publications, Ltd.

Reference48 articles.

1. N. B. and M. M. Y. W. M. S. W. Abdullah, Y. S. Yusoff, Mortality Rates Due to Coronary Heart Disease by Specific Sex and Age Groups among Malaysians,, vol. II, (2017).

2. World Health Organization, World Health Organization - Noncommunicable Disease (NCD) Country Profile, 2014,, World Heal. Organ., p.1, (2014).

3. J. S. Sonawane, D. R. Patil, and V. S. Thakare, Survey on Decision Support System For Heart Disease,, Int. J. Adv. Technol., vol. 4, no. 1, p.89–96, (2013).

4. M. K. Ross, W. Wei, and L. Ohno-Machado, 'Big Data' and The Electronic Health Record.,, Yearb. Med. Inform., vol. 9, no. 1, p.97–104, (2014).

5. R. S. Evans, Electronic Health Records: Then, Now, and in the Future,, Yearb. Med. Inform., pp. S48–S61, (2016).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Selection using Generalized Linear Model for Machine Learning-based Sepsis Prediction;2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS);2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3