Affiliation:
1. Technische Universität Darmstadt
2. Technische Universität Darmstadt, System Reliability, Adaptive Structures, and Machine Acoustics
Abstract
The stiffness of metal formed products strongly affects the dynamic behavior of structures in which they are integrated. Forming processes underlie short and long-term variations which cause the stiffness to be uncertain.In the application of resonant shunted piezoelectric transducers for vibration attenuation, uncertain stiffness may cause significant reduction in the vibration attenuation performance due to imprecise tuning. In the past, large efforts were made to control one or more geometrical feature of products while weightier features that cause uncertainty have not been addressed.In this paper, a single point incremental forming process of a membrane-like spring element on a servo press with a 3 degrees of freedom drive system is investigated. This spring element is used in a beam support for lateral vibration attenuation with resonant shunted transducers as well as axial buckling stabilization.To reduce uncertainty caused by process variations, an offline closed-loop control of product stiffness is presented. Different product and forming criteria are integrated into a control approach based on an optimization routine. By making use of a model-based prediction of the product properties, the approach shows how to realize a multi-objective control.
Publisher
Trans Tech Publications, Ltd.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献