The Least Energy Demand Method as Metric to Evaluate Different Production Levels Based on the Relative Energy Efficiency

Author:

Kreitlein Sven1,Kupfer Isabel1,Brandmeier Markus1,Franke Jörg1

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

This paper presents a calculation system for evaluating the energy efficiency at machine, plant, location, company, and sector level based on the process specific minimum energy demand. The goal is a comparability of the energy efficiency across machines, plants, locations, companies, and sectors through definition of significant key figures. The basis of the derivation of possible saving potentials is the relative energy efficiency (REE). [7] It is determined by the quotient of minimal energy demand and actually measured consumption and requires that the actually measured energy consumption refers to an independent basis of comparison. The step-by-step development of the calculation system, structured in levels, is based on the detailed analysis of all the influential factors of the energy consumption with the help of cause and effect diagrams to calculate the minimally necessary energy demands for the manufacturing process. Furthermore, the described bottom-up approach delivers, ensuing from the process oriented level of perspective, the step-by-step conception of the calculation method. The REE of a level of perspective is calculated on the basis of the REE value of the previous production level as well as according weighting factors. On the basis of the calculation, as well as subsequent measurements within the company, optimization potentials [10] can be clearly described and can lead back to their roots. These optimization potentials are based on exemplary trials presented for a chosen manufacturing chain of the electronics production area.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3