Formation of ZnO Nanorods via Seeded Growth Hydrothermal Reaction

Author:

Ridhuan Nur Syafinaz1,Fong Yeo Pet1,Lockman Zainovia1,Khairunisak Abdul Razak1

Affiliation:

1. Universiti Sains Malaysia

Abstract

In this study, ZnO nanorods was formed on a seeded substrates prepared by thermal oxidation of Zn foil followed by hydrothermal reaction. ZnO seed was prepared via thermal oxidation process at 300°C for 10 minutes to form uniform circular nanosize grains that were suitable as a seeded template for the growth of ZnO nanorods via hydrothermal reaction. Several hydrothermal reaction parameters were studied; hydrothermal reaction temperature, ratio of zinc nitrate to hexamethylamine and pH. In hydrothermal reaction, the formation of ZnO nanorods occurs due to thermal degradation of hexamethylamine (HMT) which released hydroxyl ions that react with Zn ions in the precursor solution. Well aligned, ZnO nanorods with length of ~700 nm, base diameter of ~200 nm and top diameter of less than 30 nm needle-like structure were formed on seeded Zn substrate with concentration ratio of zinc nitrate to hexamethylamine 0.1M:0.1M, pH 6-7 at hydrothermal reaction temperature of 80°C

Publisher

Trans Tech Publications, Ltd.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3