Approaches for Monitoring the Energy Consumption with Machine Learning Methods

Author:

Gebbe Christian1,Glasschröder Johannes1,Reinhart Gunther1

Affiliation:

1. Fraunhofer IWU

Abstract

In times of rising energy costs and increasing customer awareness of sustainable production methods, many manufacturers take measures to reduce their energy consumption. However, after the realization of such activities the energy demand often tends to increase again due to e.g. leaks, clogged filters, defect valves or suboptimal parameter settings. In order to prevent this, it is necessary to quickly identify such increases by continuously monitoring the energy consumption and counteracting accordingly. Currently, the monitoring is either performed manually or by setting static threshold values. The manual control can be time consuming for large amounts of sensor data. By setting static threshold values only a fraction of the inefficiencies are disclosed. Another option is to use anomaly detection methods from the area of machine learning, which compare the actual sensor values with the expected ones. In this paper an overview about existing anomaly detection methods, which can be applied for this purpose, is presented.

Publisher

Trans Tech Publications, Ltd.

Reference37 articles.

1. BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., BDEW-Strompreisanalyse Juni 2014, Berlin, (2014).

2. VDI Zentrum Ressourceneffizienz GmbH, Umsetzung von Ressourceneffizienz-Maßnahmen in KMU und ihre Treiber, Berlin, (2011).

3. Volkswagen Aktiengesellschaft, sustainability report 2014, Wolfsburg (2015).

4. BMW Group, Sustainable value report 2014, (2015).

5. Universität Stuttgart, Institut für Energieeffizienz in der Produktion (EEP), Auswertung 3. Energieeffizienz-Index Winter 2014/2015, Stuttgart (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3