Abstract
The objective of this work is to study the phosphate adsorption from natural waters by using a granular activated carbon (GAC). Experiments were carried out with synthetic solutions of phosphate prepared using groundwater (mineralized drinking water). Batch tests were carried out in order to study different operating parameters such as the effect of contact time, pH, initial phosphate concentration and adsorbent dosage. In addition, the adsorption kinetic data were simulated using the pseudo first order, the pseudo second-order and the intra-particle diffusion model. The sorption equilibrium was analyzed by Langmuir, Freundlich and Dubinin–Radushkevich isotherms model. Results show that the phosphate adsorption was reversible and the quantity adsorbed reached its maximum value (2.82 mg/g) after 30 min. It was also found that phosphate uptake was affected by variation of pH, initial concentration of phosphate and granular activated carbon dosage. The adsorption improved with increase in pH values, initial concentration and adsorbent dosage. The results of kinetic studies revealed that pseudo-second-order model adequately described the adsorption phosphate on GAC and the intra-particle diffusion involved in the adsorption mechanism. Also, isotherm study showed that Langmuir isotherm best fit the data and the adsorption was a physical type.
Publisher
Trans Tech Publications, Ltd.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献