Technical Properties of Some Plant Fibres Compared with Glass Fibre

Author:

Sumaila M.1,Ibhadode A.O. Akii2

Affiliation:

1. Ahmadu Bello Unievrsity

2. University of Benin

Abstract

The tensile strength, specific tensile strength, breaking force, tenacity and percent elongation of some fibres extracted from eight fibrous plants found in Northern Nigeria were determined with a view to ascertaining their suitability for the replacement of glass fibre in plastic composites. Also the crimp properties and work of rupture with the specific work of rupture for all the plant fibres were analysed. The fibrous plants were Sisal (Agave Sisalana) (ASA), Lalloh (Corchorus Triden L.) (CCR), Dargaza (Grewia Mollis Juss) (GRW), Kenaf (Hibiscus Cannabinus L.) (HCB), Goruba (Hyphaene Thebaica)(HYP), Sukuwa (Sida Acuta) (SDA), Karlgo (Piliostigma Thoningii) (PTA) and Shikuri Tuggah (Urena Lobata) (ULB). Their properties were compared with E-Glass. The results show that whereas the highest tensile strength of the plant fibre (ASB) was about one-third that of the glass fibre, the highest specific tensile strength of the plant fibre (HCB) was about 5 times that of the glass fibre. The percent elongation of the plant fibres except HYB and SDA were at least 5.6 times that of the glass fibre. The specific work of rupture for the plant fibre were also found to be upto 31% higher compared with that of glass. Three of the plant fibres, (HCB, ASA and ULB) were observed to be possible replacements for the classic glass fibre.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Investigation on Properties of Acetic Acid-Treated Banana Fiber Polymer Composites;Recent Advances in Manufacturing, Automation, Design and Energy Technologies;2021-10-12

2. Polymer composites with functionalized natural fibers;Biodegradable and Biocompatible Polymer Composites;2018

3. Surface modification of natural fibers;Biodegradable and Biocompatible Polymer Composites;2018

4. Capillary effects on flax fibers – Modification and characterization of the wetting dynamics;Composites Part A: Applied Science and Manufacturing;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3