Classifying Spam Emails Using Artificial Intelligent Techniques

Author:

Roy Sanjiban Sekhar1,Viswanatham V. Madhu1

Affiliation:

1. VIT University

Abstract

Spam emails have become an increasing difficulty for the entire web-users.These unsolicited messages waste the resources of network unnecessarily. Customarily, machine learning techniques are adopted for filtering email spam. This article examines the capabilities of the extreme learning machine (ELM) and support vector machine (SVM) for the classification of spam emails with the class level (d). The ELM method is an efficient model based on single layer feed-forward neural network, which can choose weights from hidden layers,randomly. Support vector machine is a strong statistical learning theory used frequently for classification. The performance of ELM has been compared with SVM. The comparative study examines accuracy, precision, recall, false positive, true positive.Moreover, a sensitivity analysis has been performed by ELM and SVM for spam email classification.

Publisher

Trans Tech Publications, Ltd.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3