A Multi-Fault Diagnosis Method of Rolling Bearing Based on Wavelet-PCA and Fuzzy K-Nearest Neighbor

Author:

Chen Xiang Shun1,Zeng Hu Biao2,Li Zhi Xiong3

Affiliation:

1. Hunan Railway Professional Technology College

2. Zhuzhou Lince Group Co.,Ltd.

3. Wuhan University of Technology

Abstract

Rolling bearings are widely used in various areas including aircraft, mining, manufacturing, and agriculture, etc. The breakdowns of the rotational machinery resulted from the rolling bearing failures account for 30%. It is therefore imperative to monitor the rolling bearing conditions in time in order to prevent the malfunctions of the plants. In the present paper is described a fault detection and diagnosis technique for rolling bearing multi-faults based on wavelet-principle component analysis (PCA) and fuzzy k-nearest neighbor (FKNN). In the diagnosis process, the wavelet analysis was firstly employed to decompose the vibration data of the rolling bearings under eight different operating conditions, and for each sample its energy of each sub-band was calculated to obtain the original feature space. Then, the PCA was used to reduce the dimensionality of the original feature vector and hence the most important features could be gotten. Lastly, the FKNN algorithm was employed in the pattern recognition to identify the conditions of the bearings of interest. The experimental results suggest that the sensitive fault features can be extracted efficiently after the wavelet-PCA processing, and the proposed diagnostic system is effective for the rolling bearing multi-fault diagnosis. In addition, the proposed method can achieve higher performance than that without PCA with respect to the classification rate.

Publisher

Trans Tech Publications, Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3