A Fault Diagnosis Method of Rolling Bearing through Wear Particle and Vibration Analyses

Author:

Huang Zhong Yu1,Yu Zhi Qiang2,Li Zhi Xiong3,Geng Yuan Cheng1

Affiliation:

1. Hubei Three Gorges Vocational and Technical College

2. Wuhan Especial Equipment Supervise Test Institute

3. Wuhan University of Technology

Abstract

Wear particle and vibration analysis are the two main condition monitoring techniques for machinery maintenance and fault diagnosis in industry. Due to the complex nature of machinery, these two techniques can only diagnose about 30% to 40% of faults when used independently. Therefore, it is critical to integrate vibration analysis and wear particle analysis to provide a more effective maintenance program. This paper presents a new fault diagnosis approach of rolling bearings via the combination of vibration analysis and wear particle analysis. Both the tribological and vibrant information of the rolling bearings with typical faults were collected by an experimental test rig. Wear particle analysis was applied to the oil samples to obtain the wear particle number and size distribution, the particle texture and the chemical compositions, etc. Vibration analysis was used to get the time and frequency characteristics of the vibration data. Then, an intelligent data fusion method based on the genetic algorithm based fuzzy neural network was employed to identify the rolling bearing conditions. The analysis results suggest that the proposed method is more feasible and effective for the rolling bearing fault diagnosis than separated use of the two techniques with respect to the classification rate, and thus has application importance.

Publisher

Trans Tech Publications, Ltd.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3