Affiliation:
1. Universiti Tun Hussein Onn Malaysia (UTHM)
Abstract
Artificial Neural Networks have emerged as an important tool for classification and have been widely used to classify non-linearly separable pattern. The most popular artificial neural networks model is a Multilayer Perceptron (MLP) that is able to perform classification task with significant success. However due to the complexity of MLP structure and also problems such as local minima trapping, over fitting and weight interference have made neural network training difficult. Thus, the easy way to avoid these problems is by removing the hidden layers. This paper presents the ability of Functional Link Neural Network (FLNN) in overcoming the complexity structure of MLP, using it single layer architecture and proposes an Artificial Bee Colony (ABC) optimization for training the FLNN. The proposed technique is expected to provide better learning scheme for a classifier in order to get more accurate classification result.
Publisher
Trans Tech Publications, Ltd.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献