Using Artificial Bee Colony to Improve Functional Link Neural Network Training

Author:

Mohmad Hassim Yana Mazwin1,Ghazali Rozaida1

Affiliation:

1. Universiti Tun Hussein Onn Malaysia (UTHM)

Abstract

Artificial Neural Networks have emerged as an important tool for classification and have been widely used to classify non-linearly separable pattern. The most popular artificial neural networks model is a Multilayer Perceptron (MLP) that is able to perform classification task with significant success. However due to the complexity of MLP structure and also problems such as local minima trapping, over fitting and weight interference have made neural network training difficult. Thus, the easy way to avoid these problems is by removing the hidden layers. This paper presents the ability of Functional Link Neural Network (FLNN) in overcoming the complexity structure of MLP, using it single layer architecture and proposes an Artificial Bee Colony (ABC) optimization for training the FLNN. The proposed technique is expected to provide better learning scheme for a classifier in order to get more accurate classification result.

Publisher

Trans Tech Publications, Ltd.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3