Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots

Author:

Edeler Christoph1

Affiliation:

1. University of Oldenburg

Abstract

This paper describes the transition of a recently invented force-generation method to mobile nanohandling robots and outlines future applications. The presented mobile nanohandling robot makes use of miniaturized, piezo-driven Stick-Slip actuators. This allows for very accurate and fast positioning. The drives are fully developed and have proven their performance in fast pickand- place applications. On the other hand, the mentioned force-generation method allows a Stick- Slip axis to exert a dedicated force to any object, which could be useful in many micro- and nanohandling scenarios. However, the method was tested yet only in a testbed similar to the conditions in the robot. Therefore this paper deals with the extrapolation of the results to the real conditions in the robots and discusses benefits and drawbacks. After an introduction of the robot and the force-generation method, measurements are presented and discussed. The paper ends with a sketch of a possible application, which could boost the application potential not only of such mobile robots, but of Stick-Slip-based setups in general.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3