Multivariate Adaptive Regression Splines as a Tool to Improve the Accuracy of Parts Produced by FSPIF

Author:

Verbert Johan1,Behera Amar Kumar1,Lauwers Bert1,Duflou Joost R.1

Affiliation:

1. Katholieke Universiteit Leuven

Abstract

Feature Assisted Single Point Incremental Forming (FSPIF) is a technique to increase the accuracy of the SPIF process. FSPIF generates an optimized toolpath based on the features detected in the workpiece geometry and using knowledge of the behavior of these features during incremental forming. Using this optimized toolpath, parts can be formed with higher accuracy. The prediction of the dimensional deviations occurring in different features during forming as a function of their type (e.g. planar, ruled, freeform or ribs ) and various process parameters, such as sheet thickness, wall angle, tool diameter, rolling direction, etc., is an important step in the FSPIF method. Due to the great number of parameters and combinations that are possible, a mathematical tool should be used in order to automate the prediction process. One such tool is MARS or Multivariate Adaptive Regression Splines, a fast, non-parametric multivariate regression technique with automatic variable selection, which generates continuous surfaces as a response function. In this paper, the authors describe and validate the use of MARS as a tool to predict deviations in uncompensated tests by training the MARS model using only a limited number of experiments. Using this validated model, compensation strategies are developed and implemented, which have shown significant improvements in accuracy in new test cases.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3