Flow Field Analysis of Gas Jets from Nozzles for Gas-Assisted Laser Cutting

Author:

Yuan Run1,Yang Bo1,Ruan Hong Yan1,Wang Xiao1

Affiliation:

1. Jiangsu University

Abstract

The gas jets from the conical and new designed supersonic nozzles on different working pressure are simulated by a computational fluid dynamics code, FLUENT, using standard k-ε model and unstructured grid finite volume method with compressible axis-symmetry N-S equation. Under the same condition of pressure-inlet, the distribution of symmetry velocity and that of static pressure are compared. The result of the analysis indicates that conical nozzle outlet can reach subsonic or sonic flow. It is fit for low speed and low pressure situation. The gas jet from the new design supersonic nozzle working at design work pressure has better properties than those of other nozzles. So it is better for thick-plate and or high-speed laser cutting. It is obvious that the results of CFD numerical analysis are consistent with the shadowgraph. Thereby it is an effective way to optimize the nozzle according to the performance of flow field.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference6 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Assisting Gas Type on the Nusselt Number and the Skin Friction on Slots in Relation to Laser Cutting;Heat Transfer Engineering;2013-08-09

2. Jet impingement onto a laser produced kerf;International Journal of Numerical Methods for Heat & Fluid Flow;2011-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3