Electrospun Scaffolds Composed of Poly(L-lactic acid) and Hydroxyapatite

Author:

Rodriguez G.N.P1,Rodrigues L.R.1,Dias C.G.B.T.1,d´Ávila M.A.1,Zavaglia C.A.C.1

Affiliation:

1. State University of Campinas

Abstract

Tissue engineering is an important emerging area for creating biological alternatives for harvested tissues, implants, and prostheses. Biocompatible and biodegradable polymeric materials are considered an important class of materials that can be used as scaffolds in tissue engineering applications. In this work, the system studied was nanocomposites of hydroxyapatite (HA) dispersed in a matrix of PLLA. Scaffolds have to present similar structure and also function as an artificial extracellular matrix for cell attachment and growth. Hydroxyapatite is a bioactive ceramic and has been used in applications of repairing bone tissue due to its biocompatibility and osteoconductivity. Poly(L- lactic acid) is a biodegradable and biocompatible polymer and has been used in different applications in the biomedical field. In this work, polymer solutions were prepared with different percentages of hydroxyapatite and porous membranes consisting of non-woven nanostructured fibers were obtained by electrospinning. The process parameters were: voltage of 13kV, flow rate of 0.5 ml/h and distance from the tip of the needle to the collector of 12 cm. By using these process parameter, fibrous membranes were obtained with different concentrations of HA (1.96, 4.76, 9 [wt %]). The morphology of the samples was observed by SEM and the characteristic physic-chemical were analyzed by XRF, XRD, DSC and FTIR.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3