Simplified Dynamic Finite-Element Analysis for Three-Dimensional Pile-Grouped-Raft-High-Rise Buildings

Author:

Xiong Hui1,Shang Shou Ping1,Huang Liang1

Affiliation:

1. Hunan University

Abstract

Combined with the respective advantages in S-R(Sway-Rocking) impedance concept and finite-element method, a simplified 3D structural dynamic FEM considering composite pile-group-soil effects is presented. The structural members including piles are modeled by spacial beam or shell elements, and raft-base is divided into thick-shell elements with its spring-dashpot boundary coefficient obtained by impedance backcalculated. The mass-spring elements for soil between piles are set to simulate vertical, horizontal pile-group effects by strata-equivalent approach. The soil beside composite body is separated into near-field and far-field parts. The former is modeled by nonlinear spring-dashpot elements based on Winkler’s hypothesis, while the latter is modeled by a series of linear mass-spring-dashpots. With the effects of boundary track forces and energy radiation, the presented model enables researchers to conduct the time-domain nonlinear analysis in a relatively simple manner which avoids sophisticated boundary method and solid-element mesh bringing with tremendous computational cost. The seismic effect on dynamic interaction of pile-soil-complicated structures would be efficiently annotated from two structural engineering and geotechnical engineering aspects and the numerical calculation effort would be drastically decreased too. The complete procedure is mainly performed using the parametric design language assembled in the Finite Element Code Ansys. With the dynamic analysis of foundation and superstructure for a pile-supported 15-storey building, the influence of the participant effect on structural dynamic response will be depicted by various dynamic parameters of pile-soil-raft foundation in detail. Not only do the results have an agreement with some conclusions drawn by the general interaction theory, but also certain of phenomena which would be disagree with that by general analysis is involved. Even with the finite-element meshes for 68 piles, the time-history analysis procedure for PGSS (Pile-Group-Soil-Superstructure) system and the qualitative evaluation with various SSI parameters can be also fulfilled efficiently and rapidly by presented means. These results may be of help to the designers to quickly assess the significance of interaction effect for the high-rise buildings resting on any type or layout of pile-group foundation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3