On the Development of Viable Cruciform-Shaped Specimens: Towards Accurate Elevated Temperature Biaxial Testing of Lightweight Materials

Author:

Abu-Farha Fadi K.1,Hector Louis G.2,Nazzal Mohammed A.3

Affiliation:

1. Penn State Erie

2. General Motors

3. German Jordanian University

Abstract

This paper is focused on the development of viable cruciform-shaped specimen geometries where large biaxial plastic deformation can be achieved within their gauge areas. A custom-built balanced biaxial testing fixture is used to plastically deform a variety of carefully-designed AZ31B-H24 magnesium specimens until failure. Images recorded from a digital camera positioned to monitor deformation in the gauge area of each specimen are used to compute the strain fields with a digital image correlation (DIC) algorithm. The viability of each design is validated based on the extent of biaxiality of measured strains and its ability to promote plastic deformation within its gauge area up until failure. The study provides key insights into the influences of certain geometrical parameters on deformation-biaxiality in cruciform specimens.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3