Affiliation:
1. COMSATS Institution of Information Technology, Jauhar Campus
2. Pakistan Council of Renewable Energy Technologies
Abstract
Gold/Zinc Phthalocyanine/n-Si metal semiconductor contact with organic interfacial layer have been developed and characterized by Current–Voltage-Temperature (I-V-T) measurements, to study its junction and charge transport properties. The junction parameters, of diode ideality factor (n), barrier height (b) and series resistance (R¬S), of the device are found to shift with device temperature. The barrier height and the diode ideality factor are found to increase and the series resistance is found to decrease with increasing device temperature. The activation energy of the charge carriers is found to be 44 meV and the peak of interface state energy distribution curves is found to shift in terms of Ess-Ev value from 0.582 eV to 0.776 eV with increasing device temperature. The data analysis implies that the Fermi level of the organic interfacial layer shifts as function of device temperature by 100 meV in the device temperature range of 283K to 343K. In terms of dominant conduction mechanism, the I-V-T data analysis confirms the fit of data to the relationship log (IV4) V1/2 for higher device temperatures and the Poole-Frenkel type is found to be the dominant conduction mechanism for the hybrid device.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献