Friction and Wear Behavior of Structural Ceramics Sliding against Bearing Steel under Vacuum Condition

Author:

Tong Yong Xing1,Wang Li Qin1,Gu Le1,Peng Bo1

Affiliation:

1. Harbin Institute of Technology

Abstract

The friction and wear behavior of Si3N4, SiC and ZrO2 sliding against M50 bearing steel under vacuum condition at various applied load were investigated. The results showed that the properties of different ceramic materials cause the difference in wear behaviors. The coefficient of friction was lowest in SiC and M50 bearing steel couple than other cases for graphitic carbon replaced carbidic carbon at the worn layer of SiC. The specific wear rate of ZrO2 was highest and the lowest was Si3N4. The ceramic ball materials have transferred on M50 bearing steel surfaces and tribofilm consistently formed on the ceramic balls wearing surfaces. Dominant wear behaviors for three structural ceramics were adhesion abrasion, plastic deformation and brittle fracture. The couple with Si3N4 and M50 showed the best operating conditions for friction and wear resistance under higher applied load.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3