Elastic-Plastic Stress Singularities of Plane V-Notches in Power-Hardening Materials

Author:

Niu Zhong Rong1,Recho Naman2,Yang Zhi Yong1,Cheng Chang Zheng1

Affiliation:

1. Hefei University of Technology

2. ERMESS/ EPF-Ecoles d’Ingénieurs

Abstract

Extensive studies have been carried out to deal with the stress singularity of V-notch problems in linear elasticity theory. In fact, the plastic deformation consequentially arises in the notch tip region because of the high stress concentration. The solution of linear elasticity is not adequate to explain the fracture failure of V-notch structures. Because of the difficulties of the nonlinear analysis and the singularity behavior, few results are given for the plastic stress singularities of general V-notch structures. In this paper, the plane V-notch structures in a power law hardening materials are considered. The Von Mises yield criterion and the plasticity total theory are adopted when the materials arise in plastic status. Similar to methods used in the elastic analysis, the plastic stress field near V-notch tips is assumed as an asymptotic expansion with respect to the radial coordinate originating from the notch tip. The governing equations of plastic behavior of plane V-notch are transformed to eigenvalue problems of nonlinear ordinary differential equations (ODEs) contained by the stress singularity order and the associated eigenfunctions. Consequently all of the stress singularities who are less than zero and the associated eigenvectors are accurately determined for the plane V-notches with arbitrary opening angle.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress Distribution in Elastic Plane with a Semi-infinite Notch;Stress Concentration at Notches;2016-09-28

2. Bibliography;Fracture Mechanics and Crack Growth;2013-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3