Artificial Neural Network Modeling of Ferroelectric Hysteresis: An Application to Soft Lead Zirconate Titanate Ceramics

Author:

Laosiritaworn Wimalin S.1,Yimnirun Rattikorn2,Laosiritaworn Yongyut1

Affiliation:

1. Chiang Mai University

2. Suranaree University of Technology

Abstract

In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1−xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were developed separately to predict output of the hysteresis area, remnant, coercivity and squareness. Each model has two neurons in the input layer, which represent field amplitude and field frequency. The ANNs were trained with varying number of hidden layer and number of neurons in each layer to find the best network architecture with highest accuracy. After the networks have been trained, they were used to predict hysteresis properties of the unseen testing patterns of input. The predicted and the testing data were found to match very well which suggests the ANN success in modeling ferroelectric hysteresis properties obtained from experiments.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3