Affiliation:
1. Chiang Mai University
2. Suranaree University of Technology
Abstract
In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1−xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were developed separately to predict output of the hysteresis area, remnant, coercivity and squareness. Each model has two neurons in the input layer, which represent field amplitude and field frequency. The ANNs were trained with varying number of hidden layer and number of neurons in each layer to find the best network architecture with highest accuracy. After the networks have been trained, they were used to predict hysteresis properties of the unseen testing patterns of input. The predicted and the testing data were found to match very well which suggests the ANN success in modeling ferroelectric hysteresis properties obtained from experiments.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献