Effect of Tool Cone Angle on Micro Machining Based on the EMR Effect

Author:

Liu Yi1,Yan Qiu Sheng1,Lu Jia Bin1,Kong Ling Ye1,Gao Wei Qiang1

Affiliation:

1. Guangdong University of Technology

Abstract

Aiming at micro machining of 3D microstructure of brittle materials with a novel tiny-grinding wheel based on the electro-magneto-rheological (EMR) effect, five conical tools with different cone angles are designed to reveal the effect of the cone angle on the machining characteristics. The distribution of the magnetic and electric fields in the polishing area is simulated using the finite element analysis software, and the machining experiments of micro groove were conducted to confirm the simulation results. Experimental results indicate that the material removal rate increases first and decreases afterwards with the increase of the cone angle, and the section width of micro groove increases but the section depth of micro groove shows a fluctuation phenomenon within a certain range. The intensities of the electric and magnetic fields on the tip of the conical tool with the 45° cone angle are at a larger level in the five tools, which is helpful to form a stable tiny-grinding wheel based on the EMR effect and obtain a better machining effect, so the tool with the 45° cone angle is an effective and ideal machining tool for the machining of 3D microstructure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3