New Feature Subset Selection Algorithm Using Class Association Rules Mining

Author:

Zhang Shou Juan1,Zhou Quan1

Affiliation:

1. China Academy of Space Technology

Abstract

A new feature subset selection algorithm using class association rules mining is proposed in this paper. Firstly, the algorithm mines rules with features as antecedences and class attributes as consequences. Then, it selects the strongest rules one by one, and all the rules’ antecedences make up of the selected feature subset. Experimental results on 10 real data sets show that the proposed algorithm produces a remarkable advantage in enormously reducing the number of the features while keeping quite high classification accuracy compared with other existing seven algorithms. This algorithm can offer an available preprocess technique for pattern recognition, machine learning and data mining.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference11 articles.

1. JiaweiHan, MichelineKamber, DataMining: Concepts and Techniques, 2nd ed., Elsevier Inc. 2006, pp.230-231.

2. Quinlan, J.R. C4. 5: Programs for Machine Learning. Morgan Kaufmann Publishers, (1993).

3. R. Agrawal,R. Srikant, Fast algorithms for mining association rules, Proceedings of the 20th Very Large DataBases Conference(VLDB'94), Santiago de Chile, Chile, 1994, pp.487-499.

4. Jianwen Xie, Ijanhua Wu, Qingquan Qian, Feature Selection Algorithm Based on Association Rules Mining Method, IEEE2009 Eight IEEE/ACIS International Conference on Computer and Information Science, pp.357-362.

5. Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository [http: /www. ics. uci. edu/~mle arn/MLRepository. html]. Irvine, CA: University of California, School of Information and Computer Science.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3