Machining and Wear of High-Alumina Ceramics for Structural Applications

Author:

Veskovic-Bukudur Stojana1,Leban Tanja1,Ambrozic Milan2,Kosmač Tomaž2

Affiliation:

1. Hidria, AET d.o.o.

2. Jožef Stefan Institute

Abstract

The wear resistances of four standard-grade high-alumina ceramics were evaluated and related to their machining ability. Three of the material grades contained 96% of alumina and 4% of either calcium silicate, or magnesium silicate, or manganese titanate in the starting-powder composition. The nominal alumina content in the fourth material was 99.7%. The specimens were fabricated using a low-pressure injection-molding forming technique, followed by thermal de-binding and sintering. After sintering the four materials differ significantly in their grain size, bending strength and Vickers hardness. No direct relationship between the microstructural parameters and the mechanical properties was found, but there was a grain-size dependence of the surface finish after grinding under industrial conditions. The two silicate-containing ceramics exhibited considerably higher wear resistances than the two silicate-free ceramics, but no direct relationship between the abrasive wear rate during grinding and the cutting time was observed. The cutting ability represents a valuable material characteristic for industrial practice, but it should not be directly used for predicting the wear rate during grinding. Quantitative differences in the cutting time and abrasive wear rate were manifested in the different topographies of the worn surfaces. Cutting resulted in relatively large area fractions of plastically deformed surfaces, whereas pullouts dominated the worn surfaces after grinding.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3