Study on the Grooved Finger and its Application in Micro Gripper

Author:

Zheng Xiao Hu1,Liu Yuan Wei1,Gu F.1,Kim J.K.2,Lee Dong Weon2

Affiliation:

1. Huaiyin Institute of Technology

2. Chonnam National University

Abstract

A micro grooved finger has smaller bending stiffness and can be used to improve the performance of some micro cantilever devices. The deflection and bending stiffness of a micro grooved finger are discussed in this paper. An analytical model of the deflection is built up to study the effect of the groove sizes on the bending stiffness and the deflection of the grooved finger. The calculation of the analytical model is consistent with the simulation and experiment results. When the grooves depth is 0.5 μm, the spring constant of grooved micro finger is 19.8% smaller than that of flat finger without groove patterns. The spring constant of the finger decreases with the increasing of the width and depth of the groove. A novel micro electric-thermal gripper is introduced based on the grooved finger. It consists of four sub-cantilever beams arranged at the diagonal lines of the square frame in the end of the main cantilever structure suspended from the silicon substrate, which guarantees an effective contact by the four-point contact area on the top surface to grab object of importance. The thermal expansion induced deflection makes the fingers moving vertically from an ‘open’ position to a working one. The grooved fingers help to decrease the bending stiffness of the finger and increase the deflection and the initial gap. The simple fabrication process has a feasibility of compatible and mass production.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic Algorithm and Greedy Strategy-Based Multi-Mission-Point Route Planning for Heavy-Duty Semi-Rigid Airship;Sensors;2022-06-30

2. A Substrate-Agnostic, Submicrometer PSAS-to-PSAS Self-Alignment Technology for Heterogeneous Integration;IEEE Transactions on Components, Packaging and Manufacturing Technology;2021-12

3. Optical-Loss Measurement of a Silicon-Slab Waveguide;CURR OPT PHOTONICS;2020

4. Power Optimized Transceivers for Future Switched Networks;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2014-10

5. Towards zero latency photonic switching in shared memory networks;Concurrency and Computation: Practice and Experience;2014-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3