Fatigue Focused Optimization of Treatment Parameters – A Case Study about Deep Cryogenic Treatment

Author:

Baldissera Paolo1,Delprete Cristiana1

Affiliation:

1. Politecnico di Torino

Abstract

The problem of treatment parameter optimization focused on the fatigue resistance is analysed through a case study about Deep Cryogenic Treatment (DCT) of AISI 302 steel. In particular, the possibility to integrate fatigue data fittings through the Maximum Likelihood Estimation (MLE) method in the optimization process is evaluated. Two levels of two parameters (soaking time and temperature) are considered and then expanded to three by proper scaling of their values in order to include the untreated case as a “zero” level. Fatigue focused optimization is then achieved by standard Response Surface Method (RSM) and by MLE with two models for comparison purposes.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference9 articles.

1. D.C. Montgomery, Design and analysis of experiments (Wiley, 2008).

2. R.H. Myers and D.C. Montgomery, Response surface methodology: process and product optimization using designed experiments (Wiley, 2009).

3. S.N. Sivanandam and S.N. Deepa, Introduction to genetic algorithms (Springer, 2007).

4. V. V. Kurban, N.L. Yatsenko and V.I. Belyakova, Metallurgist, Vol. 51 (2007), p.3.

5. D.F. Cook, C.T. Ragsdale and R.L. Major, Eng. App. of Artif. Intell., Vol. 13 (2000), p.391.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3