Nanomechanical Properties of Bioactive Ti Surfaces Obtained by NaOH-Based Anodic Oxidation and Alkali Treatment

Author:

Szesz Eduardo Mioduski1,de Souza G.B.2,Santos Emanuel3,Kuromoto Neide K.4

Affiliation:

1. PG-MEC/UFPR - Pontifical Catholic University of Parana

2. State University of Ponta Grossa

3. Federal University of Rio de Janeiro

4. Universidade Federal do Paraná

Abstract

Titanium has been used in the production of dental implants and orthopedic prostheses due to the low tendency to corrosion and good biocompatibility. Meanwhile, the surface of titanium is not bioactive. Several surface treatments have been developed to make the surface of such metals bioactive. The aim of this work was to evaluate two of these modification processes in commercially pure titanium grade 2, both of them using NaOH solutions: the anodic oxidation and the alkali treatment. The surface morphology was evaluated by SEM/EDS, the crystal structure by XRD, and the mechanical properties and scratch resistance by instrumented indentation. The anodic oxidation (AO) was carried out using NaOH electrolyte 0.1 mol/L and constant current density of 150 mA/cm² for one minute. The alkaline treatment (AT) was performed by soaking the Ti sample in NaOH 5 mol/L solution at 60 °C for 24 hours; after this, the sample was heat treated at 600 °C for one hour in atmospheric air. The AO produced a TiO2 layer on Ti, whereas a thin sodium titanate layer was obtained by AT. Each surface modification resulted in a specific morphology, but both of them presented the increase in roughness as a common characteristic. The alkali treated Ti surfaces showed the lowest elastic modulus and hardness values. The largest increase in hardness between the treated surfaces was obtained for Ti after anodic oxidation. Scratch test indicates that the TiO2 film from AO has higher strength to tangential loading than the Ti substrate. In addition, for the Ti submitted to AT, the scratch test indicates that the modified surface layer has a poor adhesion with the substrate. Based on these results it is possible to conclude that, using NaOH solutions, Ti surfaces treated by anodic oxidation present improved mechanical properties than the alkali-treated ones.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3