Investigation of Strain Sensing Capabilities of Amorphous Magnetostrictive Wires Embedded in Epoxy Resin

Author:

Christopoulos A.C.1,Koulalis I.1,Tsamasphyros G.J.1,Kanderakis G.1

Affiliation:

1. National Technical University of Athens

Abstract

The development of fibers and adhesive systems with high durability has recently led to the creation of a new repair method of metallic structures, by the use of reinforcing patches made of composite materials. This technique is generally reported as "Composite patch repair" and provides very important advantages compared to the conventional methods of repairs. On the other hand, the technology of induction heating constitutes an innovative approach to achieve the supply of energy for the curing of resins or for the manufacturing of composite materials. In the case of resins, a ferromagnetic material must be imported into the resin, to produce the required heat. This may be achieved by importing a metallic grid in the resin. Moreover, this metallic grid, which remains inside the resin after the curing, may serve as sensor by analyzing its electrostatic properties, thus providing useful information about the structural integrity of the area (e.g. potential increase of the crack below a bonded composite repair). In this paper we present results concerning the strain sensing capabilities of amorphous magnetostrictive wires embedded in epoxy resin. The inverse magnetostrictive effect leads to a change of permeability of wires so that applied stress can change the impedance of the amorphous wires due to the skin effect with alternating current excitation. Two different types of sensing were used, contact sensing (attachment of the wire “gauge” to a sensing devise) and induction sensing (eddy current sensing probe).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3