A Design Method for Two-Degree-of-Freedom Multi-Period Repetitive Control Systems with the Specified Frequency Characteristic

Author:

Chen Zhong Xiang1,Yamada Kou1,Nakazawa Nobuaki1,Murakami Iwanori1,Ando Yoshinori1,Sakanushi Tatsuya1,Hagiwara Takaaki1,Nguyen Nhan Luong Thanh1,Yamamoto Shun1

Affiliation:

1. Gunma University

Abstract

Multi-period repetitive controllers improve the disturbance attenuation characteristic of themodified repetitive control system that follows the periodic reference input with small steady stateerror. Recently, the parameterization of all stabilizing multi-period repetitive controllers was studied.However, when the parameterization of all stabilizing multi-period repetitive controllers is used, theinput-output characteristic and the feedback characteristic cannot be specified separately. From thepractical point of view, it is desirable to specify the input-output characteristic and the feedback characteristicseparately. In addition, the parameterization is useful to design stabilizing controllers. Fromthis view-point, the parameterization of all stabilizing two-degree-of-freedom multi-period repetitivecontrollers those can specify the input-output characteristic and the disturbance attenuation characteristicseparately was solved by Yamada et al. However, when we design a stabilizing two-degree-offreedommulti-period repetitive controllers using the parameterization proposed by Yamada et al, thefrequency characteristic of the control system cannot be settled so easily. From the practical point ofview, the frequency characteristic of the control systems are required to be easily settled. This problemcan be solved by obtaining the parameterization of all stabilizing two-degree-of-freedom multi-periodrepetitive controllers with the specified frequency characteristic. In this paper, we propose the parameterizationof all stabilizing two-degree-of-freedom multi-period repetitive controllers with thespecified frequency characteristic.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3