Structural Shape Optimization Using an Adaptive Simulated Annealing

Author:

El Alem W.1,El Hami A.2,Ellaia Rachid1

Affiliation:

1. Mohammed V University

2. National Institute for Applied Sciences

Abstract

In structural design optimization, numerical techniques are increasingly used. In typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for global optimization with constraints is proposed. We have developed a new algorithm called Adaptive Simulated Annealing algorithm (ASA); ASA is a series of modifications done to the Basic Simulated Annealing algorithm ( BSA) that gives the region containing the global solution of an objective function. In addition, the stochastic method Simultaneous Perturbation Stochastic Approximation (SPSA), for solving unconstrained optimization problems, is used to refine the solution. We also propose Penalty SPSA (PSPSA) for solving constrained optimization problems. The constraints are handled using exterior point penalty functions. The proposed method is applicable for any problem where the topology of the structure is not fixed, it is simple and capable of handling problems subject to any number of nonlinear constraints. Extensive tests on the ASA as a global optimization method are presented, its performance as a viable optimization method is demonstrated by applying it first to a series of benchmark functions with 2 - 30 dimensions and then it is used in structural design to demonstrate its applicability and efficiency. It is found that the best results are obtained by ASA compared to those provided by the commercial software ANSYS.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pareto-Optimal Solutions for a Truss Problem;Advanced Materials Research;2011-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3