Evaluation of Plastic Deformation and Fracture Behaviors by Thermal Image Technique

Author:

Sakamoto Hidetoshi1,Shi Jian2,Ohbuchi Yoshifumi1,Yamamoto Mitsuharu1

Affiliation:

1. Kumamoto University

2. Southwest Petroleum University

Abstract

Failure of mechanical members largely depends on the size and the development of plastic deformation from the strain concentration parts. In order to evaluate this plastic deformation of mechanical members, we pay attention to the surface temperature that is generated by plastic deformation. Most of the plastic energy exhausted by plastic deforming is converted into heat. Therefore, the heat generation represents the macroscopic plastic deformed intensity. In this report, the tensile deformation tests by using the plate specimen with a center crack were performed and the distributions of surface temperature under the plastic deformation and crack propagation were measured by the thermocouple and the infrared thermo camera. Furthermore, FE elasto-plastic analysis couples with transient heat conduction was performed. The analytical results were good agreement with the experimental ones and it was shown that the infrared thermography method was effective non-contact measurement system as the macroscopic evaluation of the plastic deformation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3