Affiliation:
1. Tianjin University of Technology
2. Tianjin University of Science and Technology
Abstract
An extrinsic Fabry-Perot (F-P) interferometric (EFPI) sensor by using simple etching and fusing method is proposed and demonstrated. The cavity is formed by wet chemical etching of multi-mode fiber (MMF) end face in hydrofluoric acid solutions, and then it is fused to the end of a single-mode fiber (SMF) to form an extrinsic F-P structure. The strain and temperature of EFPI sensor are studied experimentally. The experimental results show that the interference wavelength becomes 2.648nm longer while the strain increases from 0N to 637N, and the strain sensitivity is about 0.004nm/N, and linearity is 0.999. The interference wavelength becomes 0.032nm shorter while the temperature increases from 20°C to 100°C. This kind of sensor has the many advantages of easy fabrication, good reliability, high-repetition, small size, low cost and mass-production, which offers great prospect for sensing applications.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献