Research on Mining Frequent Path and Prediction Algorithms of Object Movement Patterns in RFID Database

Author:

Hu Kong Fa1,Zhao Li1,Xu Yong Cheng1,Chen Ling1

Affiliation:

1. Yangzhou University

Abstract

RFID technology has been widely used and the main problem is how to process the massive path data generated. The most important work in quick access technology of the RFID Database is supply the information of object movement patterns for people, as mining frequent path. There is little research in this area so far, on the basis of Apriori, the MP-Mine algorithm proposed in this paper mines the time-related path sequence.Meanwhile, we analyse the performance of the MP-Mine. The theoretical analysis and the results of experiment indicate that the algorithm is very effective. At last, we propose corresponding prediction method, which is very useful and valuable for enterprises.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mining Frequent Movement Patterns Using Various Regular Space Embedded Networks;CICTP 2021;2021-12-14

2. Identifying Typical Movements among Indoor Objects -- Concepts and Empirical Study;2013 IEEE 14th International Conference on Mobile Data Management;2013-06

3. A Critical Evaluation of RFID in Manufacturing;IFIP Advances in Information and Communication Technology;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3