Design and Finite Element Modal Analysis of 48m Composite Wind Turbine Blade

Author:

Tarfaoui M.1,Khadimallah H.1,Imad Abdellatif2,Pradillon J.Y.1

Affiliation:

1. ENSTA-Bretagne

2. Université de Lille

Abstract

We currently notice a substantial growth in the wind energy sector worldwide. This growth is expected to be even faster in the coming years. This means that a massive number of wind turbine blades will be produced in the forthcoming years. There is a large potential for materials savings in these blades. The analysis of designed blade is done in dynamic loading. Five types of spars cross-section are taken in this work. The blade and spar are of composite material. The Finite element modal analysis of designed blade is done in ABAQUS. The scope of the present work is to investigate the structural modal analysis of full-scale 48m fiberglass composite wind turbine blades for 5MW horizontal axis wind turbine and through this to assess the potential for materials savings and consequent reductions of the rotor weight. The entire wind turbine can benefit from such weight reductions through decreased dynamics loads and thus leave room for further optimization. A numerical work has been used to address the most adequate spar shape and to get an understanding of the complex structural behavior of wind turbine blades. Five different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. Comparisons of the eigenfrequencies observed in the full-scale tests are presented and conclusions are drawn based on the mechanisms found.

Publisher

Trans Tech Publications, Ltd.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3