Identify Steel Ball Surface Defect Based on Combination of Dynamic and Static RBF Neural Network

Author:

Zhao Yan Ling1,Wu Feng Ling1,Wang Peng1,Zhang Jian Yi1

Affiliation:

1. Harbin University of Science and Technology

Abstract

Steel ball, as a rolling body of all kinds of bearings, it direct affects the bearings precision, dynamic performance and service life. This paper introduces the digital image technology Radial Basis Function (RBF)-Neural network, based on extracting the Steel Ball surface defect image features, used the strategy which is combined with static- dynamic clustering to union the two-stage study and design the hidden layer structure. Simulation and experiment show that the RBF-neural network runs stably, has fast convergence and overall accuracy rate of 96%. These can meet the needs of practical application.

Publisher

Trans Tech Publications, Ltd.

Reference5 articles.

1. U. Zekkeriva and G. Cunevt: IEEE Trans Neural Networks, Vol. 16 (2000), p.851.

2. X. Ming and D.L. Zhang: Journal of Anhui University (Natural Science Edition), Vol. 24 (2000), p.72. (In Chinese).

3. Y.F. Sun, C.Y. Liang and Q.F. Meng: Journal of Jilin University (Information Science), Vol. 1 (2002), p.63. (In Chinese).

4. A.K. Jain, J. Mao and K.M. Mohiuddin: IEEE Computer, Vol. 29 (1996), p.31.

5. G.B. H. and P. Saratchandran: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34 (2004), p.2284.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3