Prediction Model of the Charpy Impact Toughness of Deposited Metals of Welding Materials

Author:

Tong Li Ge1,Bai Lu1,Ding Hong Sheng1,Wang Li1,Bai Shi Wu2,Sui Yong Li2,Yu Jiang Feng3

Affiliation:

1. University of Science and Technology Beijing

2. Petroleum-Gas Pipeline Research Institute of China

3. Chinese People's Liberation Army 96819 Power Specialist Group

Abstract

Based on artificial neural network (ANN), prediction model of the Charpy impact toughness for automatic welding is built. The input parameters of the model consist of the chemical elements and the diameter of the welding material and the outputs is the average Charpy impact toughness. The ANNs model is established by Visual C++ based on improved back-propagation (BP) arithmetic with momentum coefficients, in which the sample data used are from automatic welding materials for X70 pipeline steel. Based on the prediction model, the influence of chemical compositions, such as C, S, P, Si, Mn, Cu, Ti and Ni on the Charpy impact toughness of welding materials are analyzed. The results show that the influence of metallic elements is significantly greater than the nonmetallic, and the contents of Mn in metallic and the C in nonmetallic have primary effect on the average Charpy impact toughness.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Test and Cause Analysis of Girth Weld with Defects;Journal of Physics: Conference Series;2022-10-01

2. Performance inspection and defect cause analysis of girth weld of high steel grade pipeline;Journal of Physics: Conference Series;2022-04-01

3. Prediction of Impact Energy of Steel Using Artificial Neural Network;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3