Reservoir Drought Prediction Using Support Vector Machines

Author:

Chiang Jie Lun1,Tsai Yu Shiue1

Affiliation:

1. National Pingtung University of Science and Technology

Abstract

In Taiwan, even though the average annual rainfall is up to 2500 mm, water shortage during the dry season happens sometimes. Especially in recent years, water shortage has seriously affected the agriculture, industry, commerce, and even the essential daily water use. Under the threat of climate change in the future, efficient use of water resources becomes even more challenging. For a comparative study, support vector machine (SVM) and other three models (artificial neural networks, maximum likelihood classifier, Bayesian classifier) were established to predict reservoir drought status in next 10-90 days in Tsengwen Reservoir. (The ten-days time interval was applied in this study as it is the conventional time unit for reservoir operation.) Four features (which are easily obtainable in most reservoir offices), including reservoir storage capacity, inflows, critical limit of operation rule curves, and the number of ten-days in a year, were used as input data to predict drought. The records of years from 1975 to 1999 were selected as training data, and those of years from 2000 to 2010 were selected as testing data. The empirical results showed that SVM outperforms the other three approaches for drought prediction. Unsurprisingly the longer the prediction time period is, the lower the prediction accuracy is. However, the accuracy of predicting next 50 days is about 85% both in training and testing data set by SVM. As a result, we believe that the SVM model has high potential for predicting reservoir drought due to its high prediction accuracy and simple input data.

Publisher

Trans Tech Publications, Ltd.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities;ISPRS Journal of Photogrammetry and Remote Sensing;2023-08

2. Techniques used to predict climate risks: a brief literature survey;Natural Hazards;2023-06-18

3. Predicting Agricultural Water Shortage in Karkheh Basin, Iran;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2023-05-11

4. Research on the application of artificial intelligence algorithms in drought prediction;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21

5. Applying Machine Learning for Threshold Selection in Drought Early Warning System;Climate;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3