Characterisation of Foamed Porous Alumina Tissue Scaffolds

Author:

Soh E.1,Ruys Andrew1

Affiliation:

1. University of Sydney

Abstract

A porous tissue scaffold depends on its ability to provide functional balance between mechanical strength, pore properties and interconnectivity of pores. High porosity levels, typically greater than 90% and pore sizes above 100µm are required for tissue growth and fixation. Alumina is a stable and very strong bioceramic which, when doped with calcium and phosphate ions, can potentially combine bioactivity with high porosity and high strength. Highly porous alumina foams were synthesized through heat induced chemical breakdown of precursor salt solutions. Pore sizes achieved for foamed alumina with moderate mole fractions are generally larger than 100µm. Foamed alumina with mole fractions on the extreme high and low ends shows lower average pore sizes. Compressive strength of synthesized foams falls in the range of 100kPa to 230kPa, significantly higher than porous biodegradable polymer tissue scaffolds. The significance of this work is that scaffolds can be produced with the unique combination of high porosity, high strength and biocompatibility.

Publisher

Trans Tech Publications, Ltd.

Subject

Biomedical Engineering,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3