High-Pressure Synthesis of High-Purity and High-Performance Diamond and cBN Ceramics

Author:

Sumiya Hitoshi1

Affiliation:

1. Sumitomo Electric Industries Ltd.

Abstract

High-purity, single-phase polycrystalline diamond and cBN have been successfully synthesized by direct conversion sintering from graphite and hBN, respectively, under static high pressure and high temperature. The high-purity polycrystalline diamond synthesized directly from graphite at ≧15 GPa and 2300-2500 °C has a mixed texture of a homogeneous fine structure (grain size : 10-30 nm, formed in a diffusion process) and a lamellar structure (formed in a martensitic process). The polycrystalline diamond has very high hardness equivalent to or even higher than that of diamond crystal. The high-purity polycrystalline cBN synthesized from high-purity hBN at 7.7 GPa and 2300 °C consists of homogeneous fine-grained particles (<0.5 μm, formed in a diffusion process). The hardness of the fine-grained high-purity polycrystalline cBN is obviously higher than that of single-crystal cBN. The fine microstructure features without any secondary phases and extremely high hardness of the nano-polycrystalline diamond and the fine-grained polycrystalline cBN are promising for applications in next-generation high-precision and high-efficiency cutting tools.

Publisher

Trans Tech Publications Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructural and mechanical properties of cBN-Si composites prepared from the high pressure infiltration method;International Journal of Refractory Metals and Hard Materials;2016-12

2. High pressure infiltration sintering of cBN–Si composites;International Journal of Refractory Metals and Hard Materials;2015-05

3. Sintering behaviors of fine-grained cBN–10wt.% Al3.21Si0.47 system under high pressure;Diamond and Related Materials;2012-09

4. Microball Endmill Made of Nano-Polycrystalline Diamond(Machine Elements, Design and Manufacturing);Transactions of the Japan Society of Mechanical Engineers Series C;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3