Hydrothermal Synthesis of Advanced Ceramic Powders

Author:

Suchanek Wojciech L.1,Riman Richard E.2

Affiliation:

1. Sawyer Technical Materials

2. Rutgers University

Abstract

This paper briefly reviews hydrothermal synthesis of ceramic powders and shows how understanding the underlying physico-chemical processes occurring in the aqueous solution can be used for engineering hydrothermal crystallization processes. Our overview covers the current status of hydrothermal technology for inorganic powders with respect to types of materials prepared, ability to control the process, and use in commercial manufacturing. General discussion is supported with specific examples derived from our own research (hydroxyapatite, PZT, -Al2O3, ZnO, carbon nanotubes). Hydrothermal crystallization processes afford excellent control of morphology (e.g., spherical, cubic, fibrous, and plate-like) size (from a couple of nanometers to tens of microns), and degree of agglomeration. These characteristics can be controlled in wide ranges using thermodynamic variables, such as reaction temperature, types and concentrations of the reactants, in addition to non-thermodynamic (kinetic) variables, such as stirring speed. Moreover, the chemical composition of the powders can be easily controlled from the perspective of stoichiometry and formation of solid solutions. Finally, hydrothermal technology affords the ability to achieve cost effective scale-up and commercial production.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3