Hot-Pressing and Hot-Forging of Polycrystalline Powder Particles with Unique Microstructures

Author:

Cannon W.R.1,Petersson Anders1,Auechalitanukuı Chira1,Keshavan H.1,Cuitino A.1

Affiliation:

1. Rutgers University

Abstract

The kinetics of hot pressing and the resulting microstructure of two types of polycrystalline spherical powders (beads) were studied. The first were spherical ZrO2 beads synthesized by sintering TOSOH spray dried ZrO2 powder loose in a crucible. The average bead diameter was 51 μm and contained 0.3 μm grains. The second were Al2O3-ZrO2(1%Y2O3) synthesized by plasma spraying spray dried powders into water to quench-in a partially amorphous, partially nanocrystalline structure. The particle size was <25μm. Densification in both cases depended on creep of the beads and densification rates at 1350°C were predicted well both by equations from Helle et al.[1] for hot isostatic pressing and a finite element analysis method. The microstructure of the Al2O3-ZrO2(1%Y2O3) was much more complex but densification kinetic also followed the Helle et al.[1]equations if creep data from hot pressed specimens of the same powder were substituted into the equations rather than literature values.

Publisher

Trans Tech Publications Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanostructured ceramics processed from coarse powder;Materials Science and Engineering: A;2008-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3