Study on Microstructure and Magnetic Properties of TM-Mg (TM: Fe, Co) Alloys Synthesized by Mechanical Alloying

Author:

Chiba Masafumi1,Hotta Hideki2,Sotoma Atsushi3,Kuji Toshiro3

Affiliation:

1. Tokai Unversity

2. Graduate School of Tokai University

3. Tokai University

Abstract

Magnesium alloys are extremely attractive candidates for hydrogen storage applications since they can potentially absorb hydrogen between 3 and 8 wt.%. The purpose of this work is to understand the microstructural and the magnetic properties for 3d-transition metal and magnesium alloys with the difficult to alloy by the conventional method due to the positive value of mixing enthalpy. We successfully formed alloys of iron or cobalt, and magnesium powders with a wide range of compositions by mechanical alloying and characterized synthesized alloys with an X-ray diffractometer, a TEM, an SEM-EPMA and a vibration sample magnetometer. The obtained Fe-Mg alloys containing less than 25 at.% Mg were single phase bcc with expanded lattice parameter. The average powder particle size changes with Mg composition. The magnetization of the samples showed a linear dilution with content of Mg. The opposite variations in lattice parameter and the coercive force with Mg content were observed. On the other hand, we observed markedly broadened XRD lines from Co-Mg alloy compounds. The microstructure of these powders implies that the alloy could be partially amorphized or changed into a nanostructure as expected from microscopy and an XRD results.

Publisher

Trans Tech Publications Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3