Grain Refinement in Magnesium Alloy AZ31 during Hot Deformation

Author:

Yang Xu Yue1,Miura Hiromi2,Sakai Taku3

Affiliation:

1. The University of Electro-Communications

2. The University of Electro-Commuications, UEC Tokyo

3. University of Electro-Communications

Abstract

The deformation behavior and structure changes of magnesium alloy AZ31 were studied in compression at temperatures ranging from 523K to 673K and at a strain rate of 3 x 10-3 s-1. They depend sensitively on deformation temperature. At high temperatures, grain fragmentation takes place due to frequent formation of kink bands initially at corrugated grain boundaries and then in grain interiors, followed by full development of new grains in high strain. At lower temperatures, in contrast, twinning takes place in rather coarse grains and kink bands are formed mainly in finer original ones in low strain. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction resulting in grain fragmentation by kink bands, i.e. continuous dynamic recrystallization (cDRX). The latter is discussed comparing with conventional, i.e. discontinuous, DRX.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3