Growth of Nanocrystalline Diamond Films on Co-Cemented Tungsten Carbide Substrates by Hot Filament CVD

Author:

Sun Fang Hong1,Zhang Zhi Ming2,Shen H.S.3,Chen Ming1

Affiliation:

1. Shanghai Jiao Tong University

2. Shanghai Jiao You Diamond Coating Co, Ltd.

3. Shanghai Jiaoyou Diamond Coating Co., Ltd

Abstract

Nanocrystalline diamond films were deposited on Co-cemented carbide substrates using CH4/H2/Ar gas mixture by hot filament chemical vapor deposition (HFCVD) technique. The evidence of nanocrystallinity, smoothness and purity was obtained by characterizing the sample with scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), high-resolution transmission electron microscopy (HR-TEM) and selected-area electron diffraction (SAED). A new process was used to deposit composite diamond films by a two-step chemical vapor deposition procedure including first the deposition of the rough polycrystalline diamond and then the smooth fine-grained nanocrystalline diamond. The results show that the film consists of nanocrystalline diamond grains with sizes range from 20 to 80 nm. The Raman spectroscopy, XRD pattern, HR-TEM image and SAED pattern of the films indicate the presence of nanocrystalline diamond. Surface roughness is measured as Ra<100nm by AFM. Smooth nanocrystalline diamond layers can be deposited on conventional microcrystalline diamond layers using a two-step chemical vapor deposition by regulating the deposition parameters. These composite diamond films with the multiplayer (nanocrystalline/microcrystalline) structure have low surface roughness and high adhesive strength on WC-Co substrates. The diamond-coated tools and drawing dies with these composite coatings display excellent performances in the practical application.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3