Decomposition of Dioxins in Gas and Water Using Photocatalytic Silica-Gel

Author:

Taoda Hiroshi1

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST)

Abstract

Dioxins are extremely toxic, and it is difficult to treat them with the conventional method. When irradiated by light, photocatalysts generate strong oxidative potential and decomposes almost all organic substances containing dioxins to water, carbon dioxide and others. Silica-gel has high adsorptive activity as well as large surface area, and it is transparent to ultraviolet light. Photocatalytic silica-gel was prepared by a dip coating method using TiO2 sol obtained by hydrolyzing titanium tetraisopropoxide on silica-gel bead (about 3mm in diameter) and heat-treated at 550°C. Since the surface area of the photocatalytic silica-gel is 300m2/g, the reaction area is large and allows the highly efficient decomposition of harmful organic substances, unpleasant odors and colored matters contained in waste water. The photocatalytic apparatus for decomposition of dioxins in emission gas from waste incinerators is composed of the catalyst layer consisting of 95dm3 photocatalytic silica-gel and 16 units of UV lamp. The photocatalytic apparatus was connected to the bypass line led from the outlet duct of cyclone, and the concentration of dioxins in the exhaust gas was measured. Decomposition test of dioxins in scrubber water was also performed using a photocatalytic apparatus with 150g photocatalytic silica-gel and 8 units of UV lamp. After 0.5dm3 of scrubber water containing dioxins was circulated in the photocatalytic apparatus for 1, 2 and 24 hour, each concentration of dioxins in the water was measured. As a result, the removal efficiency over 99% of dioxins in emission gas and scrubber water from waste incinerators has been obtained.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3