Metal-Containing Diamond-Like Nanocomposite Thin Film for Advanced Temperature Sensors

Author:

Takeno T.1,Takagi Toshiyuki1,Bozhko Aleksandra A.2,Shupegin M.,Sato T.1

Affiliation:

1. Tohoku University

2. Perm State University

Abstract

The conductivity of metal-carbon-silicon nanocomposite films considered as potential candidates for the application as wide-range temperature sensors for severe environmental conditions is studied. The films combine unique properties of amorphous carbons with a new functionality imparted by the presence of metal nanoclusters in host matrix. The deposition of carbon-silicon phase was performed using PECVD of siloxane vapors. Metals (W, Nb, and Cr) with concentration in the range from 12 to 40 at. % were incorporated in the carbon-silicon host matrix by DC magnetron co-sputtering. The conductivity of the films decreases with temperature in the range 80-400 K, being well described by the power-law dependence. The conductivity mechanism found satisfactory explanation in the framework of the model of inelastic tunneling of electrons between metal nanoclusters dispersed in carbon-silicon matrix. The parallel study of the influence of metal concentration increase on carbon phase microstructure was carried out using Raman spectroscopy.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3