Affiliation:
1. Northwestern Institute for Nonferrous Metal Research
2. Northeastern University
3. Northwest Institute for Nonferrous Metal Research
Abstract
Superplastic forming provides a good way for Ti alloys which are usually difficult to
be deformed. Ti75 alloy with a nominal composition of Ti-3Al-2Mo-2Zr is a newly developed corrosion resistant alloy, with a middle strength and high toughness. In the present paper, superplastic behavior of the alloy was investigated, the microstructural evolution in superplastic deformation was observed and the superplastic deformation mechanisms were analyzed. The results showed that the strain rate sensitivity, m, of the Ti75 alloy was larger than 0.3 and the strain was over 2.0 without surface cracking at 800°C and 5×10-4s-1 in compressive testing.
During the first stage of superplastic deformation, a phase grains became equiaxed, fine and homogeneous due to the recrystallization in a phase and diffusion in b phase. Newly formed equiaxed a grains then could slide and rotate, exhibiting superplastic features. The stress concentration caused by grain sliding of a grains could be released by slip and diffusion in b phase between the a phase grains, which acted as accommodation mechanisms.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献