Minimum Lubrication Milling of Titanium Alloys

Author:

Hassan A.1,Yao Zheng Qiang1

Affiliation:

1. Shanghai Jiao Tong University

Abstract

During excessive fluid application processing, fluid ends up on the floor, the workers, and the machine, entail serious techno-environmental and biological problems. Very little fluid enters the tool/part interface. Recently, this excess fluid has become another costly control problem. Chemicals of all types introduced into the atmosphere must also be reduced to an absolute minimum. In this paper, the technique of minimum quantity of lubrication (MQL), which is the pulverization of a minimum volume of oil in a flow of compressed air, has been studied in face mill Ti-6Al-4V titanium alloys as one alternative to the use of abundant cooling to suppress the cutting heat resulted from low thermal conductivity and the density of the workpiece material. The results showed that MQL of 125ml/h flow amount was found to be the optimum, and there is no significant difference in temperature between MQL of this flow and wet cooling when low cutting speeds used.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on performance evaluation of liquid nitrogen as coolant in turning Ti-6Al-4V alloy;Machining Science and Technology;2022-09-03

2. Finish boring process of hard alloy cutter based on electrostatic cooling-aided machining;The International Journal of Advanced Manufacturing Technology;2020-11-06

3. Investigation of the role of tribolayer formation in improving drilling performance of Ti-6Al-4V using minimum quantity of lubrication;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2020-06-23

4. Tool wear in Ti-6Al-4V alloy turning under oils on water cooling comparing with cryogenic air mixed with minimal quantity lubrication;The International Journal of Advanced Manufacturing Technology;2015-05-03

5. Experimental Study on Milling Formation and Milling Force in Green Machining Ti6Al4V;Applied Mechanics and Materials;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3