Texture Development during Final Annealing in Nonoriented Electrical Steels

Author:

Park Jong Tae1,Szpunar Jerzy A.,Kim Jae Kwan2

Affiliation:

1. Electrical Steel Research Group

2. POSCO

Abstract

Nonoriented electrical steels have been widely used as core materials in motors and generators. For these applications low core loss and high permeability are required. The magnetic properties of these steels depend on the grain size and crystallographic texture of the annealed final products. The problems related to grain size control have been extensively investigated, while texture control has received much less attention. The technologies used to control the grain size in nonoriented electrical steels have approached to their limits. However, there is still some possibility for improvement of the magnetic properties through texture control. In order to explore this possibility, the evolution of recrystallization texture for nonoriented electrical steels with 2% Si was systematically studied. Texture change during grain growth was additionally analyzed. The formation of recrystallization texture is explained by oriented nucleation. This is supported by the fact that the area fraction of nuclei or recrystallized grains with specific orientation to all new grains remains almost constant during the progress of recrystallization. Most nuclei have a high misorientation angle of 25~55° with the surrounding deformed matrices. During the progress of grain growth, Goss and {111}<112> components are weakened and the random texture is strengthened. The grains of the Goss and {111}<112> orientations have smaller grain size than those of random orientation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3