Stacking of Bi2Te3 and FeSi2 for Thermoelectric Applications

Author:

Drasar Cestmir1,Müller Eckhard2

Affiliation:

1. University of Pardubice

2. DLR - German Aerospace Center

Abstract

Recently, there is a strong interest in developing superior thermoelectric materials with the aim to improve the performance of a thermoelectric device. However, the performance of a thermoelectric generator (TEG) can be considerably improved also by applying a graded composition along the temperature gradient inside the thermoelectric device so that at each position the respective material achieves its maximum thermoelectric performance (TE FGM principle). Combining the high efficiency of Bi2Te3 (used at low temperatures) and general durability of FeSi2 (applied up to high temperatures) will result in a thermoelectric device with enhanced efficiency operating in air at a wide temperature range. The challenge is to contact these dissimilar materials without any negative impact on the performance of TEG. Besides providing a good electrical and thermal contact between Bi2Te3 and FeSi2 the junctions have to remain mechanically and chemically stable over long term. A Bi2Te3-SiO2 composite interlayer was used to adjust the different coefficient of thermal expansion (CTE) of FeSi2 (≈ 7·10-6 K-1) and Bi2Te3 (≈ 19·10-6 K-1). Due to low chemical stability of the Bi2Te3/FeSi2 contact at elevated temperatures (1000 h @ 300°C) a contacting material (diffusion barrier) based on Ni, Zn, Ti, and ZnTe was tested. Some contacts show excellent chemical and mechanical stability, though the electrical properties of the contacts do not meet the requirements (e.g. ZnTe is a wide gap semiconductor with high electrical resistivity). According to very recent studies at the Zn-based diffusion barriers a very thin layer of undoped ZnTe growing at the Bi2Te3/Zn interface causes the deterioration of the contact resistance. Ideas solving this problem are outlined and discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. A. Iwama, H. Kohri and I. Shiota: Functionally Graded Materials 2002, Proc. of the 7th Int. Symposium on Functionally Graded Materials, Beijing, China, Oct. 15-18, 2002 (Trans Tech Publications., Switzerland, 2003).

2. K. Trumble, K. Bowman, I. Reimanis, S. Sampath: Functionally Graded Materials 2000, Proc. of the 6th Int. Symp. on Functionally Graded Materials, Estes Park, CO, USA, Sept. 10-14, 2000 (Ceramic Transactions 114, The American Ceramic Society, 2001).

3. I. Shiota, I. A. Nishida: Proc. 16th Int. Conf. on Thermoelectrics, Dresden, Germany, Aug. 26-29, 1997, IEEE, Piscataway, NJ, 1997, p.364.

4. R. R. Heikes, R. W. Ure, Jr.: Chapter 1, Thermoelectricity: Science and Engineering (Interscience Publishers, R. R. Heikes, R. W. Ure Jr. Eds., New York - London, 1961).

5. H. J. Goldsmid: Chapter 3, CRC Handbook of Thermoelectricity (CRC Press Boca Raton, D. M. Rowe Ed., New York, London, Tokyo, 1995).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3